原發(fā)性卵巢功能不全(POI)是指卵巢濾泡的耗竭,導(dǎo)致40歲前不孕。這種情況的特征是月經(jīng)停止(閉經(jīng)或少經(jīng))至少4個(gè)月,促性腺激素水平增加(FSHLH),雌激素水平降低。 1942年,奧爾布賴特
一、原發(fā)性卵巢早衰導(dǎo)讀
根據(jù)《人的基因序列變化與人體疾病表征》,原發(fā)性卵巢功能不全簡(jiǎn)稱為POI,是指卵巢濾泡的耗竭,導(dǎo)致40歲前不孕。這種情況的特征是月經(jīng)停止(閉經(jīng)或少經(jīng))至少4個(gè)月,促性腺激素水平增加(FSH>LH),雌激素水平降低。
1942年,奧爾布賴特和他的同事報(bào)告了第一例原發(fā)性卵巢功能不全。佳學(xué)基因發(fā)現(xiàn),對(duì)于這種疾病的描術(shù),使用了不同的名稱。在國(guó)際上也是如此。歐洲人類生殖和胚胎學(xué)學(xué)會(huì)的指南推薦在研究和臨床中使用“卵巢早衰”來(lái)描述這種疾病。而美國(guó)婦產(chǎn)科學(xué)會(huì)(ACOG)委員會(huì)則支持“原發(fā)性卵巢功能不全”。美國(guó)國(guó)立衛(wèi)生研究院堅(jiān)持認(rèn)為這一術(shù)語(yǔ)是恰當(dāng)?shù)?,因?yàn)橛行㏄OI患者可能會(huì)出現(xiàn)自發(fā)性妊娠;因此,POI可以與自然更年期區(qū)分開(kāi)來(lái),這個(gè)術(shù)語(yǔ)可以用來(lái)描述卵巢功能不全伴閉經(jīng)表現(xiàn)。一些作者選擇了“卵巢發(fā)育不全”一詞來(lái)形容POI,但是如果解剖學(xué)上沒(méi)有出現(xiàn)異常,使用這一詞語(yǔ)則明顯不當(dāng)。
佳學(xué)基因根據(jù)不同的使用場(chǎng)景,選擇使用不同的表述方法,目的是為了更好的傳遞知識(shí)。本文采用原發(fā)性卵巢功能不全來(lái)描述這一疾病。
二、原發(fā)性卵巢早衰的疾病表征和患病率
POI患者表現(xiàn)出廣泛的臨床表型,該病可以在青春期至40歲的女性中發(fā)生?;颊呖杀憩F(xiàn)為原發(fā)性閉經(jīng),這種情況通常在年輕時(shí)診斷為青春期延遲、無(wú)乳房發(fā)育和月經(jīng)初潮,而繼發(fā)性閉經(jīng)的診斷年齡在20至40歲之間,其特征是青春期發(fā)育正常,月經(jīng)周期不規(guī)則閉經(jīng)。繼發(fā)性閉經(jīng)是最常見(jiàn)的POI表型。
POI的廣泛臨床表現(xiàn)已在不同的人群中得到證實(shí)。通過(guò)對(duì)675名女性原發(fā)性卵巢早衰進(jìn)行的研究表明,繼發(fā)性閉經(jīng)發(fā)生率為84%,高于原發(fā)性閉經(jīng)(16%)。青春期延遲的特點(diǎn)是患者表現(xiàn)為原發(fā)性閉經(jīng)以及乳房發(fā)育不全或不有效(70%),這是由于在這么小的年齡段雌激素水平低所致。相比之下,在另一對(duì)74名卵巢早衰所做的研究中,評(píng)估了51名原發(fā)性閉經(jīng)和23名繼發(fā)性閉經(jīng)。原發(fā)性閉經(jīng)的高患病率可能是由于表型嚴(yán)重,因?yàn)樵l(fā)性閉經(jīng)主要在內(nèi)分泌科進(jìn)行評(píng)估,而表現(xiàn)為繼發(fā)性閉經(jīng)的輕度表型則傾向于由婦科來(lái)處理。
雖然POI的發(fā)生情況與種族有關(guān),但缺乏流行病學(xué)數(shù)據(jù)。然而,患病率似乎隨著年齡增長(zhǎng)而增加(20歲時(shí)為1:10000,30歲為1:1000,40歲為1:100)。
在另一行研究中發(fā)現(xiàn),在普通人群中,POI的患病率(1.9%)高于先前所證明的。在1036918名女性中,1.7%表現(xiàn)為自發(fā)性POI,其中的0.2%的被診斷為醫(yī)源性POI。此外,在美國(guó)的7個(gè)地點(diǎn)對(duì)40-55歲的婦女進(jìn)行了橫斷面調(diào)查(全國(guó)婦女研究[SWAN]),確定了11652名婦女中自我報(bào)告的POI患病率,沒(méi)有明顯的種族區(qū)別。事實(shí)上,有1.1%的女性患有POI,其中1.0%是白人,1.4%是非裔美國(guó)人,1.4%是西班牙裔,0.5%是中國(guó)人,0.1%是日本人。在巴西,POI的患病率仍不清楚。
三、診斷
根據(jù)目前的美國(guó)和歐洲指南,POI診斷是通過(guò)連續(xù)兩次測(cè)量促性腺激素水平,兩次之間的間隔至少1個(gè)月(絕經(jīng)期范圍內(nèi)FSH水平升高通常大于20 IU/ml)和閉經(jīng)至少3或4個(gè)月。
POI診斷確認(rèn)后,應(yīng)進(jìn)行染色體分析、脆性X染色體突變(FMR1)分析、腎上腺(21羥化酶)和甲狀腺抗體評(píng)估,以及盆腔超聲檢查[1]。這種篩查可能有助于確定POI的病因;然而,已經(jīng)確定大多數(shù)POI病例仍然沒(méi)有明確的病因,這可能是由于大多數(shù)遺傳病因分析是采用基因檢測(cè)的方法,有專家認(rèn)為,隨著基因解碼分析方法的采用,更多通過(guò)基因檢測(cè)未能找到病因的卵巢早衰患者可能會(huì)由于找到病因而得到更有針對(duì)性的治療。
四、POI病因
原發(fā)性卵巢功能不全可由遺傳缺陷、自身免疫性疾病、醫(yī)源性因素(化療或放療)、病毒感染或毒素引起,或者盡管進(jìn)行了詳盡的調(diào)查,但仍可能是特發(fā)性的。遺傳缺陷,染色體異常和單基因缺陷可導(dǎo)致POI。同時(shí),基因解碼也揭示,多個(gè)基因的共同作用,也可以導(dǎo)致卵巢早衰。本文試圖介紹卵巢早衰的基因解碼研究結(jié)果,以指導(dǎo)基因檢測(cè)進(jìn)行得更為全面和有效。據(jù)透露,佳學(xué)基因等機(jī)構(gòu)正在著力研究不同基因?qū)е碌穆殉苍缢サ尼槍?duì)性調(diào)理方案,以便于更發(fā)的治療這種影響人類生育和生活水平的疾病。
A、 染色體異常與綜合征性卵巢早衰
染色體異常是卵巢早衰的一個(gè)公認(rèn)的原因,其發(fā)生率約為10-13%。染色體的數(shù)目變化主要發(fā)生在X單體(45,X;Turner綜合征)、鑲嵌型(45,X/46,XX和45,X/47,XXX),X三體(47,XXX),X缺失,X常染色體易位,以及或小或大的重排。通過(guò)細(xì)胞遺傳學(xué)分析可以對(duì)核型進(jìn)行數(shù)值變化的評(píng)估,基因解碼倡導(dǎo)的全外顯子測(cè)序方法最近已成為評(píng)估卵巢早衰I和其他內(nèi)分泌疾病的拷貝數(shù)變異(CNVs)的有力工具。此外,綜合征性卵巢早衰I也可能是由FMR1基因5'調(diào)節(jié)區(qū)的CGG重復(fù)序列的擴(kuò)增引起的,這導(dǎo)致了脆性-X綜合征。在患者中,F(xiàn)MR1的CGG重復(fù)數(shù)大于200,由于該基因的甲基化和沉默,這種突變被稱為有效突變。對(duì)于動(dòng)態(tài)突變患者,CGG重復(fù)數(shù)在55到199之間。在患有卵巢早衰的女性中,應(yīng)調(diào)查FMR1的動(dòng)態(tài)突變,因?yàn)榇蠹s20%的女性攜帶者中,這種突變與卵巢早衰相關(guān)。此外,從Xq13.3到Xq27的X染色體區(qū)域被證明是卵巢功能正常的關(guān)鍵區(qū)域(卵巢早衰1[Xq23-Xq27]和POI2[Xq13-Xq21])。此外,平衡X染色體易位斷點(diǎn)中斷的基因或X染色體點(diǎn)突變也是卵巢早衰的致病基因,這些基因包括包括COL4A6、DACH2、DIF2、NXF5、PGRMC1、POF1B和XPNPEP2。
B、 非綜合征性卵巢早衰:基因解碼所揭示的新卵巢早衰基因
B-1。已知卵巢早衰基因
卵巢發(fā)育和功能相關(guān)基因。在基因解碼時(shí)代,關(guān)于特發(fā)性卵巢早衰分子基礎(chǔ)的信息迅速增加。近年來(lái),大規(guī)模測(cè)序技術(shù)已經(jīng)確定了一些已知基因的新致病性基因突變(FSHR、GDF9、BMP15、FIGLA和NOBOX)。這些基因首先與卵巢早衰的病因有關(guān),因?yàn)樗鼈冊(cè)诎l(fā)育和/或卵巢功能中的作用。它們?cè)诠δ苌峡煞譃榕c(1)生殖細(xì)胞發(fā)育相關(guān)的基因,(2)卵子發(fā)生和卵泡發(fā)生,(3)類固醇生成,和(4)激素信號(hào)傳導(dǎo)相關(guān)的基因。在胚胎發(fā)育過(guò)程中,大量的生殖細(xì)胞因?yàn)榈蛲鲞^(guò)程而消失,參與這一過(guò)程的基因突變,如nano3和EIF4ENIF1,可能導(dǎo)致卵巢早衰的發(fā)生。此外,許多因素參與卵泡和卵母細(xì)胞的募集、發(fā)育和成熟。事實(shí)上,編碼激素受體的基因突變,如FSHR和LHCGR,是卵巢功能損害的明顯原因,并可能在臨床上引起不同的疾病表征。卵巢功能正常的另一個(gè)重要步驟是類固醇生成,雌激素通過(guò)它合成。雌激素合成途徑的任何改變都可能導(dǎo)致閉經(jīng)和高FSH水平;然而,抗苗勒氏激素應(yīng)該是正常的。具有與類固醇生成途徑相關(guān)的基因突變的女性,如NR5A1和STAR,可能會(huì)出現(xiàn)綜合征或孤立的卵巢早衰表型。此外,生長(zhǎng)因子如TGFβ家族成員(BMP15和GDF9)在卵巢功能中起著關(guān)鍵作用,這些基因的缺陷與卵巢早衰的發(fā)生有關(guān)。BMP15促進(jìn)卵巢生長(zhǎng)和成熟,可以以常染色體顯性遺傳和隱性遺傳的方式引起卵巢早衰表型(表1)。此外,GDF9蛋白對(duì)卵巢卵泡發(fā)育也是必不可少的,卵巢早衰患者出現(xiàn)繼發(fā)性閉經(jīng)的突變最初被認(rèn)為是染色體顯性遺傳;然而,雜合子GDF9+/-雌性小鼠是可生育的,只有Gdf9陰性的雌性小鼠由于初級(jí)卵泡階段的阻塞而不育。這與之前觀察到的雜合子錯(cuò)義突變不同?;蚪獯a研究人員一名巴西原發(fā)性閉經(jīng)患者中發(fā)現(xiàn)了GDF9基因的純合子1-bp缺失(c.783delC)突變,這是一種更嚴(yán)重的表型。在過(guò)去的二十年中,一些與人類和動(dòng)物模型中的出生后卵母細(xì)胞分化相關(guān)的轉(zhuǎn)錄因子被相繼確定,如NOBOX、SOHLH1、SOHLH2、FIGLA和LHX8。NOBOX能夠調(diào)節(jié)多種卵巢基因,包括GDF9和BMP15。在小鼠中,NOBOX蛋白的缺失會(huì)導(dǎo)致原始卵泡的逐漸喪失,從而導(dǎo)致成熟卵泡的缺失。最初,描述了具有顯性負(fù)效應(yīng)的雜合子致病基因突變,但是也觀察到一個(gè)純合變異的家族病例;一名中國(guó)患者也出現(xiàn)了原發(fā)性閉經(jīng)。SOHLH1在卵泡發(fā)育的初始階段[參與生殖細(xì)胞的維持。在人類中,SOHLH1的雙等位基因突變?cè)趦蓚€(gè)患有孤立性POI的家族中被鑒定出來(lái)。非綜合征卵巢早衰還與FIGLA基因雜合缺失有關(guān),F(xiàn)IGLA基因是螺旋-環(huán)-螺旋家族的一種轉(zhuǎn)錄因子。這種轉(zhuǎn)錄因子調(diào)節(jié)透明帶中基因的表達(dá)以及其他僅在卵巢中表達(dá)的基因;因此,它的缺失或缺陷可能會(huì)促進(jìn)人類和小鼠的卵巢功能衰竭。
減數(shù)分裂和DNA修復(fù)基因。基因解碼普遍采用高通量測(cè)序技術(shù)全面獲得可能引起患者各種復(fù)雜表型的致病基因突變,從而揭示了主要在細(xì)胞分裂和/或DNA修復(fù)中起重要作用的新基因,這些基因包括MCM8、MCM9、STAG3、PSMC3IP、HFM1、NUP107和SYCE1)。卵母細(xì)胞在出生前開(kāi)始減數(shù)分裂的第一階段,在胎兒期停留在第一階段,當(dāng)婦女進(jìn)入青春期時(shí)重新開(kāi)始細(xì)胞分裂;次級(jí)卵母細(xì)胞在排卵時(shí)釋放。由于卵母細(xì)胞處于靜息狀態(tài),參與減數(shù)分裂和DNA修復(fù)的基因改變可能導(dǎo)致卵巢功能不全的不同表型。一些輔酶,如STAG3和Syc1,在細(xì)胞分裂過(guò)程中對(duì)突觸復(fù)合體的正確形成是必不可少的,這些基因的突變導(dǎo)致人類不育。此外,小染色體維持蛋白(MCM8和MCM9)的解旋酶在減數(shù)分裂期間的同源重組步驟中起著至關(guān)重要的作用。MCM8和MCM9蛋白的缺失促進(jìn)了小鼠減數(shù)分裂過(guò)程中的錯(cuò)誤,例如MCM8-/-小鼠的減數(shù)分裂前期I停止、初級(jí)卵泡停止、卵巢腫瘤的頻繁發(fā)生,以及MCM9-/-小鼠有效缺乏卵母細(xì)胞。在過(guò)去的幾年中,導(dǎo)致MCM8和MCM9蛋白質(zhì)功能喪失的純合突變被以高通量測(cè)序?yàn)榛A(chǔ)條件的基因解碼分析方法不斷被鑒定明確下來(lái)。
B-2號(hào)?;蚪獯a揭示的新基因
此外,在人類和動(dòng)物模型中,與卵巢發(fā)育和減數(shù)分裂有關(guān)的卵巢早衰的新病因至少有15個(gè)。這些基因按照與卵巢早衰相關(guān)的已知基因的相同模式進(jìn)行分類。
卵巢發(fā)育和功能相關(guān)基因:BMP受體2(BMPR2)。BMPR2是一種絲氨酸蘇氨酸激酶II型受體,它似乎結(jié)合BMP因子來(lái)影響其配體的下游信號(hào)傳導(dǎo),影響卵泡發(fā)育。Patiño及其合作者報(bào)告了體外證據(jù),證明BMPR2中的p.Ser987Phe突變?cè)黾恿藘?nèi)質(zhì)網(wǎng)的亞細(xì)胞聚集模式,顯示了該基因與分離的卵巢早衰有潛在的關(guān)聯(lián)。
縫隙連接蛋白α4(GJA4)/連接蛋白-37(CX37)。GJA4在卵泡發(fā)育中起作用,在小鼠體內(nèi)該基因的破壞導(dǎo)致卵巢卵泡發(fā)生在腔前階段停止,從而導(dǎo)致女性不育。在2例繼發(fā)性閉經(jīng)的卵巢早衰患者中發(fā)現(xiàn)GJA4中的雜合子錯(cuò)義變體(c.946G>A:p.Gly316Ser)。雖然這種突變?cè)诎追N人的對(duì)照組中還沒(méi)有報(bào)道,但在非洲個(gè)體中普遍觀察到。體外研究表明,p.Gly316Ser能夠以顯性陰性的方式降低細(xì)胞表面縫隙連接斑塊的表達(dá)。其機(jī)制可能涉及縫隙連接內(nèi)吞和溶酶體降解的增加。事實(shí)上,在這個(gè)法國(guó)隊(duì)列中進(jìn)行了候選基因研究;因此,沒(méi)有其他POI候選基因被排除為POI的原因。
含RNA結(jié)合信號(hào)轉(zhuǎn)導(dǎo)相關(guān)蛋白1(KHDRBS1)的KH結(jié)構(gòu)域。KHDRBS1在多種細(xì)胞過(guò)程中發(fā)揮作用,如選擇性剪接、細(xì)胞周期調(diào)控、RNA 3′端形成、腫瘤發(fā)生和人類免疫系統(tǒng)調(diào)節(jié)。KHDRBS1(又名Sam68)在敲除雌性小鼠卵巢中的作用已被研究。Sam68-/-雌性小鼠由于第一次懷孕延遲、產(chǎn)仔量少、卵巢中次級(jí)卵泡和腔前卵泡數(shù)量減少而表現(xiàn)出低生育能力[98]。利用全外顯子組測(cè)序(WES),在一名中國(guó)母親和一名患POI的大女兒中發(fā)現(xiàn)了一個(gè)KHDRBS1雜合子變異(c.460A>G:p.Met154Val)。在另一名患者中也發(fā)現(xiàn)了第二個(gè)單等位基因突變(c.263C>T:p.Pro88Leu)。體外試驗(yàn)表明KHDRBS1突變(c.460A>G)對(duì)選擇性剪接的影響;然而,還沒(méi)有進(jìn)行體內(nèi)研究[98]。KHDRBS1的另一個(gè)雜合子變體(c.887C>T:p.Pro296Leu)也在一名攜帶FGFR2變體的POI患者中發(fā)現(xiàn)(c.64C>T:p.Arg22Trp)[99]。然而,需要進(jìn)一步的功能研究來(lái)驗(yàn)證其致病性。
自噬相關(guān)蛋白7(ATG7)和自噬相關(guān)蛋白9(ATG9A)。自噬是一種適應(yīng)過(guò)程,發(fā)生在對(duì)不同形式的應(yīng)激反應(yīng)中,如營(yíng)養(yǎng)缺乏、生長(zhǎng)因子耗竭、感染和缺氧。自噬過(guò)程調(diào)節(jié)許多疾病,包括神經(jīng)退行性疾病、癌癥和傳染病[100]。自噬因子,如自噬相關(guān)蛋白(ATG)及其調(diào)節(jié)因子,對(duì)自噬過(guò)程至關(guān)重要,包括起始、吞噬細(xì)胞成核和膨脹(ATG7和ATG9)、貨物隔離、膜密封、自噬體成熟和自噬體與溶酶體融合[100]。小鼠缺乏Atg7會(huì)導(dǎo)致中樞神經(jīng)系統(tǒng)功能受損,導(dǎo)致出生后28周出現(xiàn)行為缺陷和致死性?;蚯贸∈蟠竽X和小腦皮質(zhì)也有大量神經(jīng)元丟失[101]。此外,由于自噬機(jī)制的缺陷,卵巢中原始卵泡減少,生殖細(xì)胞特異性敲除Atg7促進(jìn)了雌性小鼠的亞生育能力[102]。在雄性小鼠中,Atg7的破壞會(huì)導(dǎo)致頂體的異常形成和異常圓頭精子的發(fā)育[103],從而導(dǎo)致生育能力低下。Atg9條件敲除小鼠表現(xiàn)出神經(jīng)功能缺陷,包括軸突及其終末的進(jìn)行性變性,但不包括神經(jīng)元細(xì)胞體,這些小鼠在出生后4周內(nèi)死亡[104]。在人類中,在兩名分別被診斷為繼發(fā)性和原發(fā)性閉經(jīng)的患者中,ATG7(c.1209T>A:p.Phe403Leu)和ATG9(c.2272C>T:p.Arg758Cys)有兩個(gè)單等位基因突變[10,90]。在體外研究中,這些突變通過(guò)降低產(chǎn)生自噬體的能力,以單體不足的方式破壞自噬過(guò)程[90]。
RNA聚合酶III亞單位H(POLR3H)。RNA聚合酶III合成一些未翻譯的RNA,并在細(xì)胞生長(zhǎng)、分化和先天免疫反應(yīng)中發(fā)揮關(guān)鍵作用[105]。盡管亞單位A和B(POLR3A和POLR3B)與隱性4H綜合征(包括髓鞘發(fā)育不良、牙髓發(fā)育不良、促性腺激素低下和白質(zhì)營(yíng)養(yǎng)不良綜合征)相關(guān),但在人類疾病的情況下,尚未報(bào)告該亞基的突變,甚至是孤立的促性腺激素低下癥[109]。
我們之前報(bào)道了兩個(gè)POI不相關(guān)家系中POLR3H中的一個(gè)新的雙等位基因錯(cuò)義突變(c.149A>G:p.Asp50Gly),并用CRISPR/Cas9方法生成了兩個(gè)小鼠系,以評(píng)估POLR3H-p.Asp50Gly突變的內(nèi)在機(jī)制[93]。在具有Polr3hD50G突變的小鼠中觀察到早期胚胎致死性[93]。與所有4例患者一樣,攜帶Polr3hD50G純合子點(diǎn)突變的小鼠表現(xiàn)出青春期延遲。在Polr3hD50G雌性和雄性小鼠中觀察到產(chǎn)仔量小,懷孕時(shí)間或懷孕時(shí)間增加。的確,與野生型小鼠相比,Polr3hD50G小鼠卵巢Foxo3a表達(dá)減少,初級(jí)卵泡數(shù)量更少[93]。這是POLR3H致病性突變導(dǎo)致人類不孕的首個(gè)證據(jù)。
切口受體2(NOTCH2)。NOTCH通路參與了胎兒和出生后的細(xì)胞命運(yùn)決定和分化過(guò)程[110]。相關(guān)的蛋白質(zhì),包括四個(gè)NOTCH受體(NOTCH 1-4)和5個(gè)NOTCH配體(鋸齒狀1-2和DELTA-LIKE 1、3和4),與無(wú)脊椎動(dòng)物(果蠅、秀麗隱桿線蟲(chóng))和哺乳動(dòng)物自我更新系統(tǒng)的穩(wěn)態(tài)維持有關(guān)[110]。NOTCH信號(hào)在調(diào)節(jié)原始卵泡形成中的功能作用已在小鼠中得到證實(shí)[111]。在NOTCH信號(hào)抑制劑的存在下,新生卵巢的原始卵泡減少。研究還表明jagg-1、NOTCH2和HES1分別是表達(dá)最豐富的配體、受體和靶基因。此外,NOTCH2在原始卵泡的顆粒前細(xì)胞中表達(dá)[111]。在人類中,NOTCH2與Alagille綜合征(ALGS)相關(guān),這是一種常染色體顯性多系統(tǒng)疾病,臨床定義為肝膽管貧乏和膽汁淤積,并伴有心臟、骨骼和眼科表現(xiàn)(MIM-118450)。此外,Hajdu-Cheney綜合征(HJCYS)也與NOTCH2有關(guān),是一種罕見(jiàn)的常染色體顯性骨骼疾病,其特征是身材矮小、相貌粗糙和畸形、長(zhǎng)骨彎曲和脊椎畸形(MIM-102500)。
最近報(bào)道了與POI相關(guān)的NOTCH2突變。已鑒定出4例具有不同NOTCH2變異體的患者:1例患者出現(xiàn)原發(fā)性閉經(jīng),并攜帶復(fù)合雜合子突變(c[7223T>a:p.Leu2408His];[6947C>T:p.Ala2316Val]),3例患者出現(xiàn)繼發(fā)性閉經(jīng),每個(gè)患者都攜帶一個(gè)單等位基因變體(c.5411C>T:p.Ser1804Leu,c.7075C>G:p.Pro2359Ala,或c、 5433G>c:p.Gln1811His)。上述3個(gè)NOTCH2突變(p.Ser1804Leu、p.Ala2316Val和p.Pro2359Ala)的轉(zhuǎn)錄活性已經(jīng)得到證實(shí),盡管在對(duì)照組和具有所有所述突變體的個(gè)體之間沒(méi)有蛋白質(zhì)水平的差異[94]。
減數(shù)分裂和DNA修復(fù)基因:參與DNA修復(fù)的支架蛋白(SPIDR/KIAA0146)。SPIDR是一種連接解旋酶和同源重組(HR)機(jī)制的蛋白質(zhì)。SPIDR的缺失促進(jìn)了姐妹染色單體缺陷、基因組不穩(wěn)定性和對(duì)DNA損傷效應(yīng)的敏感性的增加[112]。在2個(gè)有POI的姐妹中發(fā)現(xiàn)了一個(gè)無(wú)意義的純合突變(c.839G>A:p.Trp280*),其父母為以色列-穆斯林-阿拉伯血統(tǒng)。這對(duì)姐妹表現(xiàn)為青春期延遲,促性腺激素水平升高,臨床表現(xiàn)有一些差異,包括卵巢發(fā)育不全和咖啡色斑(妹妹)或卵巢缺失(姐姐)。兩姐妹的核型正常,46,XX,無(wú)畸形特征。p.Trp280*突變表明,SPIDR活性在同源重組過(guò)程中受損,導(dǎo)致53BP1標(biāo)記的雙鏈斷裂,并在未受干擾的生長(zhǎng)過(guò)程中造成gH2AX標(biāo)記的損傷[80]。
MutS同系物4(MSH4)和MutS同源物5(MSH5)。MSH4和MSH5是減數(shù)分裂特異性蛋白,是同源染色體重組和正確分離所必需的。攜帶Msh4或Msh5缺陷的雄性和雌性小鼠由于減數(shù)分裂失敗而不育[113114],這兩種基因都可能參與POI的發(fā)病機(jī)制。診斷為繼發(fā)性閉經(jīng)的兩個(gè)姐妹被發(fā)現(xiàn)在MSH4中存在純合供體剪接位點(diǎn)突變(c.2355+1G>a:p.Ile743_Lys785del)[81]。在一個(gè)中國(guó)隊(duì)列中,在2個(gè)分離的POI姐妹中發(fā)現(xiàn)了一個(gè)新的MSH5純合子錯(cuò)義突變(c.1459G>T:p.Asp487Tyr)。在一項(xiàng)體外研究中,使用敲除小鼠(Msh5D486Y/D486Y)進(jìn)行的功能評(píng)估顯示卵巢萎縮,MSH5破壞損害了DNA同源重組修復(fù)[82]。
范科尼貧血互補(bǔ)組(fancom)。FANCM參與修復(fù)DNA復(fù)制和同源重組。這種基因的單等位基因突變與乳腺癌和卵巢癌的易感性有關(guān)。此外,由于缺乏遺傳數(shù)據(jù)或其他功能證據(jù),F(xiàn)ANCM不再被列為Fanconi貧血基因,雙等位基因突變?cè)谠摷膊≈衅鹬匾饔肹115]。然而,在兩個(gè)被診斷為非綜合征性POI的芬蘭同胞中發(fā)現(xiàn)了FANCM的純合無(wú)義突變(c.5101C>T:p.Gln1701*)。對(duì)姐妹的淋巴細(xì)胞分析顯示,染色體斷裂和對(duì)絲裂霉素C過(guò)敏的程度增加[84]。此外,在一名被診斷患有無(wú)精子癥的葡萄牙人身上發(fā)現(xiàn)了FANCM的雙等位基因突變(c.5791C>T:p.Arg1931*)。FANCM突變已被證明與減數(shù)分裂缺陷和男性不育有關(guān)。
巴索諾克林1號(hào)(BNC1)。BNC1是一種鋅指蛋白,在睪丸和卵巢的生殖細(xì)胞、角質(zhì)形成細(xì)胞和毛囊中高度表達(dá)。敲除小鼠卵母細(xì)胞中的BNC1可降低RNA聚合酶的轉(zhuǎn)錄水平,并導(dǎo)致小而不規(guī)則的卵泡形態(tài)。事實(shí)上,敲除卵巢顯示黃體呈現(xiàn)正常排卵,盡管女性出現(xiàn)亞生育[117]。用WES方法對(duì)一個(gè)有7例POI感染婦女的中國(guó)家庭進(jìn)行篩查,發(fā)現(xiàn)BNC1基因有5-bp的雜合子缺失(c.1065_1069)交貨:p.Arg356Valfs*6) 一。此外,在4例無(wú)關(guān)的POI患者中發(fā)現(xiàn)了BNC1的雜合子錯(cuò)義變體(c.1595T>c:p.Leu532Pro)[88]。在體外和體內(nèi)實(shí)驗(yàn)中證實(shí)了BNC1半抗原的不足。有缺失和錯(cuò)義突變的轉(zhuǎn)染細(xì)胞在卵巢中表現(xiàn)出異常的核定位和減數(shù)分裂的損傷。攜帶5-bp缺失的雜合子(Bnc1+/-)和純合子(Bnc1-/-)小鼠由于卵巢儲(chǔ)備減少(即FSH升高、卵巢大小減小和卵泡大小減?。┒憩F(xiàn)出雌性不育[88]。
含蛋白62的WD重復(fù)序列(WDR62)。WDR62是一種廣泛表達(dá)的支架JNK結(jié)合蛋白。這種蛋白在應(yīng)激后的mRNA穩(wěn)態(tài)中起著調(diào)節(jié)作用,JNK是它的伙伴[118]。Bilguvar及其合作者[119]首先在10名患者中發(fā)現(xiàn)了WDR62的隱性錯(cuò)義和功能缺失突變,并發(fā)現(xiàn)這些突變導(dǎo)致了廣泛的大腦皮質(zhì)畸形,包括小頭畸形、皮質(zhì)增厚的厚皮癥和胼胝體發(fā)育不全。后來(lái),由于有絲分裂缺陷、神經(jīng)元遷移延遲和神經(jīng)元分化改變,在神經(jīng)發(fā)生過(guò)程中,Wdr62的破壞導(dǎo)致了小頭癥。這些老鼠也是不育的,并且在出生后的早期階段體型比正常老鼠小[120]。此外,Wdr62基因敲除小鼠表現(xiàn)出雌性減數(shù)分裂起始缺陷,這些缺陷通過(guò)JNK1在生殖細(xì)胞中的過(guò)度表達(dá)得以挽救,呈現(xiàn)卵巢減少和卵泡缺失的不孕癥[89]。利用WES,研究人員還評(píng)估了兩例診斷為原發(fā)性閉經(jīng)的散發(fā)性POI病例,每個(gè)病例都有一個(gè)錯(cuò)義突變(c.1796G>A:p.Cys599Tyr)或一個(gè)移碼突變(c.3203_3206)交貨:p.Thr1068fs)在WDR62中。盡管體外研究表明,這些突變的顯性負(fù)效應(yīng)受Stra8表達(dá)的調(diào)控,并且小鼠表型與原發(fā)性閉經(jīng)表型相關(guān),攜帶p.Cys599Tyr突變的患者在2個(gè)與女性不育相關(guān)的不同基因(BRCA2和SPTB)中也有3個(gè)額外的變體;因此,該患者的遺傳病因仍不清楚[89]。
DNA修復(fù)相關(guān)/乳腺癌2型易感蛋白/范科尼貧血組D1蛋白(BRCA2)。BRCA2參與維持基因組的穩(wěn)定性,特別是雙鏈DNA修復(fù)的同源重組途徑的信號(hào)傳導(dǎo)[121]。Davies及其合作者[122]表明,BRCA2在調(diào)節(jié)RAD51(一種同源重組和DNA修復(fù)所必需的蛋白質(zhì))的作用中起著雙重作用。因此,BRCA2失活后失去對(duì)這些過(guò)程的控制可能導(dǎo)致基因組不穩(wěn)定和腫瘤發(fā)生[122]。BRCA2(和BRCA1)的種系單等位基因突變?cè)黾恿私K生癌癥的風(fēng)險(xiǎn);它們首先被描述為家族性病例中的乳腺癌和卵巢癌,其次是散發(fā)病例,后來(lái)是男性乳腺癌和前列腺癌病例[123]。此外,D1型范科尼貧血是由BRCA2純合突變引起的。男性和女性患者有多種先天性異常、骨髓衰竭和預(yù)期的癌癥易感性。在這些患者中,通常包括更年期男性的精子發(fā)生改變。非血緣埃塞俄比亞父母所生的兩個(gè)姐妹被診斷為POI,表現(xiàn)為原發(fā)性閉經(jīng)、青春期延遲、身材矮小、咖啡色斑、小頭畸形,其中一個(gè)姐妹的急性髓細(xì)胞白血病長(zhǎng)期緩解[91]。這些兄弟姐妹攜帶BRCA2的復(fù)合雜合子截?cái)嗤蛔儯s7579德?tīng)柛瘢簆.Val2527*]和[9693德拉:p.Ser3231fs16*]). 有趣的是,分離分析顯示在他們的母親中有一個(gè)單等位基因BRCA2突變(c.7579delG),診斷為卵巢癌Ⅲ期患者。先證者外周血淋巴細(xì)胞染色體斷裂,以及RAD51基因未能進(jìn)入雙鏈DNA斷裂,表明對(duì)DNA損傷的反應(yīng)受損。此外,果蠅BRCA2同源體的破壞導(dǎo)致雄性和雌性不育和性腺發(fā)育不全[91]。其中1例為散發(fā)性突變,其中1例為家族性突變交貨:p.Cys3233Trpfs*15] ),分別為[92]。這些病人表現(xiàn)為原發(fā)性閉經(jīng),但沒(méi)有發(fā)現(xiàn)血液學(xué)異?;蚰[瘤。另外,2個(gè)姐妹表現(xiàn)為原發(fā)性閉經(jīng)和小頭畸形,被診斷為早發(fā)性結(jié)直腸癌和乳腺癌。BRCA2的兩個(gè)變體(c.[6468_6469delTC];[c.8471G>c])在兩個(gè)兄弟姐妹中都被發(fā)現(xiàn),隨后通過(guò)長(zhǎng)程PCR證實(shí)為反式[92]。雖然最后2例可能擴(kuò)大了BRCA2表型的范圍,但其致病性需要進(jìn)一步的功能驗(yàn)證。
腫瘤蛋白p63(TP63)。TP63是p53家族的一員,是一種與癌癥、發(fā)育和生殖有關(guān)的轉(zhuǎn)錄因子[124]。p63和p73的聯(lián)合丟失損害了p53依賴性凋亡的誘導(dǎo),以響應(yīng)小鼠胚胎成纖維細(xì)胞的DNA損傷和體內(nèi)方法[125]。此外,p63,特別是TAp63亞型,通過(guò)調(diào)節(jié)DICER和miR130b來(lái)抑制腫瘤的發(fā)生和轉(zhuǎn)移[126]。在卵巢中,p63被要求在減數(shù)分裂停止期間維持雌性生殖系的完整性。此外,p63在DNA損傷誘導(dǎo)的初級(jí)卵母細(xì)胞死亡過(guò)程中起著關(guān)鍵作用,不涉及p53[126]。p63缺失小鼠的卵母細(xì)胞對(duì)殺死WT和p53空白小鼠所有卵母細(xì)胞的相同劑量的輻射具有抵抗力[126]。TP63與通過(guò)常染色體顯性遺傳(MIM 603273)影響多個(gè)器官的復(fù)雜綜合征有關(guān);然而,最近在一個(gè)表現(xiàn)為原發(fā)性閉經(jīng)的孤立POI患者中發(fā)現(xiàn)TP63中的1個(gè)單等位基因無(wú)意義致病性變體(c.1794G>A:p.Arg594*)。需要進(jìn)一步的功能研究來(lái)評(píng)估這種變體的致病性。
代謝和蛋白質(zhì)合成相關(guān)基因:RNA聚合酶II亞單位C(POLR2C)。POLR2C編碼RNA聚合酶II的最大亞單位,在真核生物中合成信使RNA[127]。在一名患有家族性POI的婦女中發(fā)現(xiàn)了POLR2C的雜合子無(wú)義突變(c.454A>T:p.Lys152*),她還被診斷為免疫性血小板減少癥、惡性貧血和甲狀腺功能減退。一項(xiàng)含有p.Lys152*基因敲除的體外研究顯示POLR2C水平降低,細(xì)胞增殖受損[85]。
五、總結(jié)
POI是一種高度異質(zhì)性的疾病,與75個(gè)以上的基因突變有關(guān),這些基因主要與減數(shù)分裂和DNA修復(fù)有關(guān),每一個(gè)基因只影響少數(shù)女性。一些基因還沒(méi)有被證明與POI病因?qū)W有關(guān),功能研究或關(guān)于受累婦女的額外報(bào)告有理由證實(shí)它們與POI病因的關(guān)系。雖然POI的遺傳病因?qū)W已經(jīng)被幾個(gè)小組研究過(guò),盡管NGS技術(shù)已經(jīng)增加了在POI病因?qū)W中起作用的已知基因的數(shù)量,并且允許在POI病因?qū)W中發(fā)現(xiàn)新的參與者,但是大多數(shù)病例仍然沒(méi)有明確的基因診斷。在接下來(lái)的幾年里,考慮到這種疾病強(qiáng)大的遺傳背景和低成本、高通量的并行測(cè)序技術(shù)的廣泛應(yīng)用,將發(fā)現(xiàn)POI表型的新的遺傳病因。
卵巢早衰基因解碼已發(fā)表的證據(jù)支持
1.
Hewitt GD, Gerancher KR. ACOG Committee Opinion No. 760: Dysmenorrhea and Endometriosis in the Adolescent. Obstet Gynecol. Obstetr Gynecol. 2018;132(6):E249–E258. [PubMed] [Google Scholar]
2.
Webber L, Davies M, Anderson R, et al. . ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. [PubMed] [Google Scholar]
3.
Albright F, Smith PH, Fraser R.. A syndrome characterized by primary ovarian insufficiency and decreased stature: report of 11 cases with a digression on hormonal control of axillary and pubic hair. Am J Med Sci. 1942;204:625–648. [Google Scholar]
4.
Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev. 2016;37(6):609–635. [PubMed] [Google Scholar]
5.
Franca MM, FM, Lerario AM, et al. . Screening of targeted panel genes in 50 Brazilian patients with primary ovarian insufficiency. 2019.
6.
Goswami D, Conway GS. Premature ovarian failure. Hum Reprod Update. 2005;11(4):391–410. [PubMed] [Google Scholar]
7.
Lagergren K, Hammar M, Nedstrand E, Bladh M, Sydsjö G. The prevalence of primary ovarian insufficiency in Sweden; a national register study. BMC Womens Health. 2018;18(1):175. [PMC free article] [PubMed] [Google Scholar]
8.
Luborsky JL, Meyer P, Sowers MF, Gold EB, Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition. Hum Reprod. 2003;18(1):199–206. [PubMed] [Google Scholar]
9.
Fonseca DJ, Patiño LC, Suárez YC, et al. . Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations. Fertil Steril. 2015;104(1):154–162.e2. [PubMed] [Google Scholar]
10.
Patiño LC, Silgado D, Laissue P. A potential functional association between mutant BMPR2 and primary ovarian insufficiency. Syst Biol Reprod Med. 2017;63(3):145–149. [PubMed] [Google Scholar]
11.
Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808. [PMC free article] [PubMed] [Google Scholar]
12.
Bestetti I, Castronovo C, Sironi A, et al. . High-resolution array-CGH analysis on 46,XX patients affected by early onset primary ovarian insufficiency discloses new genes involved in ovarian function. Hum Reprod. 2019;34(3):574–583. [PMC free article] [PubMed] [Google Scholar]
13.
Funari MFA, de Barros JS, Santana LS, et al. . Evaluation of SHOX defects in the era of next-generation sequencing. Clin Genet. 2019;96(3):261–265. [PubMed] [Google Scholar]
14.
Sullivan SD, Welt C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):299–307. [PubMed] [Google Scholar]
15.
Nishimura-Tadaki A, Wada T, Bano G, et al. . Breakpoint determination of X;autosome balanced translocations in four patients with premature ovarian failure. J Hum Genet. 2011;56(2):156–160. [PubMed] [Google Scholar]
16.
Bione S, Sala C, Manzini C, et al. . A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62(3):533–541. [PMC free article] [PubMed] [Google Scholar]
17.
Bione S, Rizzolio F, Sala C, et al. . Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum Reprod. 2004;19(12):2759–2766. [PubMed] [Google Scholar]
18.
Genesio R, Mormile A, Licenziati MR, et al. . Short stature and primary ovarian insufficiency possibly due to chromosomal position effect in a balanced X;1 translocation. Mol Cytogenet. 2015;8:50. [PMC free article] [PubMed] [Google Scholar]
19.
Bertini V, Ghirri P, Bicocchi MP, Simi P, Valetto A. Molecular cytogenetic definition of a translocation t(X;15) associated with premature ovarian failure. Fertil Steril. 2010;94(3):1097.e5–1097.e8. [PubMed] [Google Scholar]
20.
Chen CP, Su YN, Lin HH, et al. . De novo duplication of Xq22.1→q24 with a disruption of the NXF gene cluster in a mentally retarded woman with short stature and premature ovarian failure. Taiwan J Obstet Gynecol. 2011;50(3):339–344. [PubMed] [Google Scholar]
21.
Mansouri MR, Schuster J, Badhai J, et al. . Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17(23):3776–3783. [PMC free article] [PubMed] [Google Scholar]
22.
Lorda-Sanchez IJ, Ibañez AJ, Sanz RJ, et al. . Choroideremia, sensorineural deafness, and primary ovarian failure in a woman with a balanced X-4 translocation. Ophthalmic Genet. 2000;21(3):185–189. [PubMed] [Google Scholar]
23.
Lacombe A, Lee H, Zahed L, et al. . Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am J Hum Genet. 2006;79(1):113–119. [PMC free article] [PubMed] [Google Scholar]
24.
Ledig S, Preisler-Adams S, Morlot S, Liehr T, Wieacker P. Premature ovarian failure caused by a heterozygous missense mutation in POF1B and a reciprocal translocation 46,X,t(X;3)(q21.1;q21.3). Sex Dev. 2015;9(2):86–90. [PubMed] [Google Scholar]
25.
Prueitt RL, Chen H, Barnes RI, Zinn AR. Most X;autosome translocations associated with premature ovarian failure do not interrupt X-linked genes. Cytogenet Genome Res. 2002;97(1-2):32–38. [PubMed] [Google Scholar]
26.
Dixit H, Rao LK, Padmalatha V, et al. . Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure. Menopause. 2005;12(6):749–754. [PubMed] [Google Scholar]
27.
França MM, Funari MFA, Nishi MY, et al. . Identification of the first homozygous 1-bp deletion in GDF9 gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing. Clin Genet. 2018;93(2):408–411. [PubMed] [Google Scholar]
28.
Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004;75(1):106–111. [PMC free article] [PubMed] [Google Scholar]
29.
Patiño LC, Walton KL, Mueller TD, et al. . BMP15 mutations associated with primary ovarian insufficiency reduce expression, activity, or synergy with GDF9. J Clin Endocrinol Metab. 2017;102(3):1009–1019. [PubMed] [Google Scholar]
30.
Zhang W, Wang J, Wang X, et al. . A novel homozygous mutation of bone morphogenetic protein 15 identified in a consanguineous marriage family with primary ovarian insufficiency. Reprod Biomed Online. 2018;36(2):206–209. [PubMed] [Google Scholar]
31.
Mayer A, Fouquet B, Pugeat M, Misrahi M. BMP15 “knockout-like” effect in familial premature ovarian insufficiency with persistent ovarian reserve. Clin Genet. 2017;92(2):208–212. [PubMed] [Google Scholar]
32.
Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81(3):576–581. [PMC free article] [PubMed] [Google Scholar]
33.
Li L, Wang B, Zhang W, et al. . A homozygous NOBOX truncating variant causes defective transcriptional activation and leads to primary ovarian insufficiency. Hum Reprod. 2017;32(1):248–255. [PubMed] [Google Scholar]
34.
França MM, Funari MFA, Lerario AM, et al. . A novel homozygous 1-bp deletion in the NOBOX gene in two Brazilian sisters with primary ovarian failure. Endocrine. 2017;58(3):442–447. [PubMed] [Google Scholar]
35.
Zhao H, Chen ZJ, Qin Y, et al. . Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet. 2008;82(6):1342–1348. [PMC free article] [PubMed] [Google Scholar]
36.
Chen B, Li L, Wang J, et al. . Consanguineous familial study revealed biallelic FIGLA mutation associated with premature ovarian insufficiency. J Ovarian Res. 2018;11(1):48. [PMC free article] [PubMed] [Google Scholar]
37.
Yuan P, He Z, Sun S, et al. . Bi-allelic recessive loss-of-function mutations in FIGLA cause premature ovarian insufficiency with short stature. Clin Genet. 2019;95(3):409–414. [PubMed] [Google Scholar]
38.
Aittomäki K, Lucena JL, Pakarinen P, et al. . Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell. 1995;82(6):959–968. [PubMed] [Google Scholar]
39.
França MM, Lerario AM, Funari MFA, et al. . A novel homozygous missense FSHR variant associated with hypergonadotropic hypogonadism in two siblings from a Brazilian family. Sex Dev. 2017;11(3):137–142. [PubMed] [Google Scholar]
40.
Liu H, Xu X, Han T, et al. . A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency. Fertil Steril. 2017;108(6):1050–1055.e2. [PubMed] [Google Scholar]
41.
He WB, Du J, Yang XW, et al. . Novel inactivating mutations in the FSH receptor cause premature ovarian insufficiency with resistant ovary syndrome. Reprod Biomed Online. 2019;38(3):397–406. [PubMed] [Google Scholar]
42.
Liu H, Guo T, Gong Z, et al. . Novel FSHR mutations in Han Chinese women with sporadic premature ovarian insufficiency. Mol Cell Endocrinol. 2019;492:110446. [PubMed] [Google Scholar]
43.
Santos MG, Machado AZ, Martins CN, et al. . Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency. Biomed Res Int. 2014;2014:787465. [PMC free article] [PubMed] [Google Scholar]
44.
Kasippillai T, MacArthur DG, Kirby A, et al. . Mutations in eIF4ENIF1 are associated with primary ovarian insufficiency. J Clin Endocrinol Metab. 2013;98(9):E1534–E1539. [PMC free article] [PubMed] [Google Scholar]
45.
Arnhold IJ, Lofrano-Porto A, Latronico AC. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women. Horm Res. 2009;71(2):75–82. [PubMed] [Google Scholar]
46.
Lourenço D, Brauner R, Lin L, et al. . Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–1210. [PMC free article] [PubMed] [Google Scholar]
47.
Bose HS, Pescovitz OH, Miller WL. Spontaneous feminization in a 46,XX female patient with congenital lipoid adrenal hyperplasia due to a homozygous frameshift mutation in the steroidogenic acute regulatory protein. J Clin Endocrinol Metab. 1997;82(5):1511–1515. [PubMed] [Google Scholar]
48.
Peng J, Li Q, Wigglesworth K, et al. . Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci U S A. 2013;110(8):E776–E785. [PMC free article] [PubMed] [Google Scholar]
49.
Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 2002;23(6):787–823. [PubMed] [Google Scholar]
50.
Laissue P, Christin-Maitre S, Touraine P, et al. . Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 2006;154(5):739–744. [PubMed] [Google Scholar]
51.
Kovanci E, Rohozinski J, Simpson JL, Heard MJ, Bishop CE, Carson SA. Growth differentiating factor-9 mutations may be associated with premature ovarian failure. Fertil Steril. 2007;87(1):143–146. [PubMed] [Google Scholar]
52.
Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383(6600):531–535. [PubMed] [Google Scholar]
53.
Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science. 2004;305(5687):1157–1159. [PubMed] [Google Scholar]
54.
Ballow D, Meistrich ML, Matzuk M, Rajkovic A. Sohlh1 is essential for spermatogonial differentiation. Dev Biol. 2006;294(1):161–167. [PubMed] [Google Scholar]
55.
Bayram Y, Gulsuner S, Guran T, et al. . Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism. J Clin Endocrinol Metab. 2015;100(5):E808–E814. [PMC free article] [PubMed] [Google Scholar]
56.
Ballow DJ, Xin Y, Choi Y, Pangas SA, Rajkovic A. Sohlh2 is a germ cell-specific bHLH transcription factor. Gene Expr Patterns. 2006;6(8):1014–1018. [PubMed] [Google Scholar]
57.
Choi Y, Yuan D, Rajkovic A. Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod. 2008;79(6):1176–1182. [PMC free article] [PubMed] [Google Scholar]
58.
Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development. 2000;127(21):4645–4654. [PubMed] [Google Scholar]
59.
Pangas SA, Choi Y, Ballow DJ, et al. . Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci U S A. 2006;103(21):8090–8095. [PMC free article] [PubMed] [Google Scholar]
60.
Qin Y, Zhao H, Kovanci E, Simpson JL, Chen ZJ, Rajkovic A. Analysis of LHX8 mutation in premature ovarian failure. Fertil Steril. 2008;89(4):1012–1014. [PMC free article] [PubMed] [Google Scholar]
61.
AlAsiri S, Basit S, Wood-Trageser MA, et al. . Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest. 2015;125(1):258–262. [PMC free article] [PubMed] [Google Scholar]
62.
Bouali N, Francou B, Bouligand J, et al. . New MCM8 mutation associated with premature ovarian insufficiency and chromosomal instability in a highly consanguineous Tunisian family. Fertil Steril. 2017;108(4):694–702. [PubMed] [Google Scholar]
63.
Wood-Trageser MA, Gurbuz F, Yatsenko SA, et al. . MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet. 2014;95(6):754–762. [PMC free article] [PubMed] [Google Scholar]
64.
Desai S, Wood-Trageser M, Matic J, et al. . MCM8 and MCM9 nucleotide variants in women with primary ovarian insufficiency. J Clin Endocrinol Metab. 2017;102(2):576–582. [PMC free article] [PubMed] [Google Scholar]
66.
Colombo R, Pontoglio A, Bini M. A STAG3 missense mutation in two sisters with primary ovarian insufficiency. Eur J Obstet Gynecol Reprod Biol. 2017;216:269–271. [PubMed] [Google Scholar]
67.
He WB, Banerjee S, Meng LL, et al. . Whole-exome sequencing identifies a homozygous donor splice-site mutation in STAG3 that causes primary ovarian insufficiency. Clin Genet. 2018;93(2):340–344. [PubMed] [Google Scholar]
68.
França MM, Nishi MY, Funari MFA, et al. . Two rare loss-of-function variants in the STAG3 gene leading to primary ovarian insufficiency. Eur J Med Genet. 2019;62(3):186–189. [PubMed] [Google Scholar]
69.
Zangen D, Kaufman Y, Zeligson S, et al. . XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription. Am J Hum Genet. 2011;89(4):572–579. [PMC free article] [PubMed] [Google Scholar]
70.
Al-Agha AE, Ahmed IA, Nuebel E, et al. . Primary ovarian insufficiency and azoospermia in carriers of a homozygous PSMC3IP stop gain mutation. J Clin Endocrinol Metab. 2018;103(2):555–563. [PMC free article] [PubMed] [Google Scholar]
71.
Yang X, Touraine P, Desai S, et al. . Gene variants identified by whole-exome sequencing in 33 French women with premature ovarian insufficiency. J Assist Reprod Genet. 2019;36(1):39–45. [PMC free article] [PubMed] [Google Scholar]
72.
Wang J, Zhang W, Jiang H, Wu BL; Primary Ovarian Insufficiency Collaboration Mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med. 2014;370(10):972–974. [PubMed] [Google Scholar]
73.
Zhe J, Chen S, Chen X, et al. . A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res. 2019;12(1):61. [PMC free article] [PubMed] [Google Scholar]
74.
Weinberg-Shukron A, Renbaum P, Kalifa R, et al. . A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J Clin Invest. 2015;125(11):4295–4304. [PMC free article] [PubMed] [Google Scholar]
75.
Ren Y, Diao F, Katari S, et al. . Functional study of a novel missense single-nucleotide variant of NUP107 in two daughters of Mexican origin with premature ovarian insufficiency. Mol Genet Genomic Med. 2018;6(2):276–281. [PMC free article] [PubMed] [Google Scholar]
76.
Huhtaniemi I, Hovatta O, La Marca A, et al. . Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab. 2018;29(6):400–419. [PubMed] [Google Scholar]
77.
de Vries L, Behar DM, Smirin-Yosef P, Lagovsky I, Tzur S, Basel-Vanagaite L. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab. 2014;99(10):E2129–E2132. [PubMed] [Google Scholar]
78.
Lee KY, Im JS, Shibata E, et al. . MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun. 2015;6:7744. [PMC free article] [PubMed] [Google Scholar]
79.
Lutzmann M, Grey C, Traver S, et al. . MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol Cell. 2012;47(4):523–534. [PubMed] [Google Scholar]
80.
Smirin-Yosef P, Zuckerman-Levin N, Tzur S, et al. . A biallelic mutation in the homologous recombination repair gene SPIDR is associated with human gonadal dysgenesis. J Clin Endocrinol Metab. 2017;102(2):681–688. [PubMed] [Google Scholar]
81.
Carlosama C, Elzaiat M, Patiño LC, Mateus HE, Veitia RA, Laissue P. A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency. Hum Mol Genet. 2017;26(16):3161–3166. [PubMed] [Google Scholar]
83.
Bachelot A, Gilleron J, Meduri G, et al. . A common African variant of human connexin 37 is associated with Caucasian primary ovarian insufficiency and has a deleterious effect in vitro. Int J Mol Med. 2018;41(2):640–648. [PMC free article] [PubMed] [Google Scholar]
84.
Fouquet B, Pawlikowska P, Caburet S, et al. . A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency. Elife. 2017;6:e30490. [PMC free article] [PubMed] [Google Scholar]
85.
Moriwaki M, Moore B, Mosbruger T, et al. . POLR2C mutations are associated with primary ovarian insufficiency in women. J Endocr Soc. 2017;1(3):162–173. [PMC free article] [PubMed] [Google Scholar]
86.
Chen A, Tiosano D, Guran T, et al. . Mutations in the mitochondrial ribosomal protein MRPS22 lead to primary ovarian insufficiency. Hum Mol Genet. 2018;27(11):1913–1926. [PMC free article] [PubMed] [Google Scholar]
87.
Wang B, Li L, Zhu Y, et al. . Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing. Hum Reprod. 2017;32(10):2138–2146. [PubMed] [Google Scholar]
88.
Zhang D, Liu Y, Zhang Z, et al. . Basonuclin 1 deficiency is a cause of primary ovarian insufficiency. Hum Mol Genet. 2018;27(21):3787–3800. [PubMed] [Google Scholar]
89.
Zhou Y, Qin Y, Qin Y, et al. . Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. Plos Genet. 2018;14(8):e1007463. [PMC free article] [PubMed] [Google Scholar]
90.
Delcour C, Amazit L, Patino LC, et al. . ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure. Genet Med. 2019;21(4):930–938. [PubMed] [Google Scholar]
91.
Weinberg-Shukron A, Rachmiel M, Renbaum P, et al. . Essential role of BRCA2 in ovarian development and function. N Engl J Med. 2018;379(11):1042–1049. [PMC free article] [PubMed] [Google Scholar]
92.
Turchetti D, Zuntini R, Tricarico R, Bellacosa A. BRCA2 in ovarian development and function. N Engl J Med. 2019;380(11):1086–1087. [PubMed] [Google Scholar]
93.
Franca MM, Han X, Funari MFA, et al. . Exome sequencing reveals the POLR3H gene as a novel cause of primary ovarian insufficiency. J Clin Endocrinol Metab. 2019;104(7):2827–2841. [PMC free article] [PubMed] [Google Scholar]
94.
Patiño LC, Beau I, Morel A, et al. . Functional evidence implicating NOTCH2 missense mutations in primary ovarian insufficiency etiology. Hum Mutat. 2019;40(1):25–30. [PubMed] [Google Scholar]
95.
Tucker EJ, Grover SR, Robevska G, van den Bergen J, Hanna C, Sinclair AH. Identification of variants in pleiotropic genes causing “isolated” premature ovarian insufficiency: implications for medical practice. Eur J Hum Genet. 2018;26(9):1319–1328. [PMC free article] [PubMed] [Google Scholar]
96.
Chapman C, Cree L, Shelling AN. The genetics of premature ovarian failure: current perspectives. Int J Womens Health. 2015;7:799–810. [PMC free article] [PubMed] [Google Scholar]
97.
Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature. 1997;385(6616):525–529. [PubMed] [Google Scholar]
98.
Bianchi E, Barbagallo F, Valeri C, et al. . Ablation of the Sam68 gene impairs female fertility and gonadotropin-dependent follicle development. Hum Mol Genet. 2010;19(24):4886–4894. [PubMed] [Google Scholar]
99.
Carlosama C, Patiño LC, Beau I, et al. . A novel mutation in KHDRBS1 in a patient affected by primary ovarian insufficiency. Clin. Endocrinol. 2018;89(2):245–246. [PubMed] [Google Scholar]
100.
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–364. [PubMed] [Google Scholar]
101.
Komatsu M, Waguri S, Chiba T, et al. . Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–884. [PubMed] [Google Scholar]
102.
Song ZH, Yu HY, Wang P, et al. . Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis. 2015;6:e1589. [PMC free article] [PubMed] [Google Scholar]
103.
Wang H, Wan H, Li X, et al. . Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24(7):852–869. [PMC free article] [PubMed] [Google Scholar]
104.
Yamaguchi J, Suzuki C, Nanao T, et al. . Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy. 2018;14(5):764–777. [PMC free article] [PubMed] [Google Scholar]
105.
White RJ. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol. 2005;6(1):69–78. [PubMed] [Google Scholar]
106.
Bernard G, Chouery E, Putorti ML, et al. . Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(3):415–423. [PMC free article] [PubMed] [Google Scholar]
107.
Saitsu H, Osaka H, Sasaki M, et al. . Mutations in POLR3A and POLR3B encoding RNA Polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. Am J Hum Genet. 2011;89(5):644–651. [PMC free article] [PubMed] [Google Scholar]
108.
Tétreault M, Choquet K, Orcesi S, et al. . Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(5):652–655. [PMC free article] [PubMed] [Google Scholar]
109.
Richards MR, Plummer L, Chan YM, et al. . Phenotypic spectrum of POLR3B mutations: isolated hypogonadotropic hypogonadism without neurological or dental anomalies. J Med Genet. 2017;54(1):19–25. [PMC free article] [PubMed] [Google Scholar]
110.
Dumortier A, Wilson A, MacDonald HR, Radtke F. Paradigms of notch signaling in mammals. Int J Hematol. 2005;82(4):277–284. [PubMed] [Google Scholar]
111.
Trombly DJ, Woodruff TK, Mayo KE. Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology. 2009;150(2):1014–1024. [PMC free article] [PubMed] [Google Scholar]
112.
Wan L, Han J, Liu T, et al. . Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc Natl Acad Sci U S A. 2013;110(26):10646–10651. [PMC free article] [PubMed] [Google Scholar]
113.
Kneitz B, Cohen PE, Avdievich E, et al. . MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000;14(9):1085–1097. [PMC free article] [PubMed] [Google Scholar]
114.
de Vries SS, Baart EB, Dekker M, et al. . Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13(5):523–531. [PMC free article] [PubMed] [Google Scholar]
115.
Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev. 2015;33:32–40. [PubMed] [Google Scholar]
116.
Kasak L, Punab M, Nagirnaja L, et al. ; GEMINI Consortium Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. Am J Hum Genet. 2018;103(2):200–212. [PMC free article] [PubMed] [Google Scholar]
117.
Ma J, Zeng F, Schultz RM, Tseng H. Basonuclin: a novel mammalian maternal-effect gene. Development. 2006;133(10):2053–2062. [PubMed] [Google Scholar]
118.
Wasserman T, Katsenelson K, Daniliuc S, Hasin T, Choder M, Aronheim A. A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation. Mol Biol Cell. 2010;21(1):117–130. [PMC free article] [PubMed] [Google Scholar]
119.
Bilgüvar K, Oztürk AK, Louvi A, et al. . Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467(7312):207–210. [PMC free article] [PubMed] [Google Scholar]
120.
Sgourdou P, Mishra-Gorur K, Saotome I, et al. . Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep. 2017;7:43708. [PMC free article] [PubMed] [Google Scholar]
121.
Xia F, Taghian DG, DeFrank JS, et al. . Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A. 2001;98(15):8644–8649. [PMC free article] [PubMed] [Google Scholar]
122.
Davies AA, Masson JY, McIlwraith MJ, et al. . Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273–282. [PubMed] [Google Scholar]
123.
Daum H, Peretz T, Laufer N. BRCA mutations and reproduction. Fertil Steril. 2018;109(1):33–38. [PubMed] [Google Scholar]
124.
Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G. The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol. 2011;12(4):259–265. [PubMed] [Google Scholar]
125.
Flores ER, Tsai KY, Crowley D, et al. . p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 2002;416(6880):560–564. [PubMed] [Google Scholar]
126.
Suh EK, Yang A, Kettenbach A, et al. . p63 protects the female germ line during meiotic arrest. Nature. 2006;444(7119):624–628. [PubMed] [Google Scholar]
127. Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle. 2010;9(18):3687–3699. [PMC free article] [PubMed] [Google Scholar]
128.
Pierce SB, Chisholm KM, Lynch ED, et al. . Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci U S A. 2011;108(16):6543–6548. [PMC free article] [PubMed] [Google Scholar]
129.
Pierce SB, Gersak K, Michaelson-Cohen R, et al. . Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am J Hum Genet. 2013;92(4):614–620. [PMC free article] [PubMed] [Google Scholar]
(責(zé)任編輯:佳學(xué)基因)